x^2-x-20=-x

Simple and best practice solution for x^2-x-20=-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-x-20=-x equation:



x^2-x-20=-x
We move all terms to the left:
x^2-x-20-(-x)=0
We add all the numbers together, and all the variables
x^2-x-(-1x)-20=0
We add all the numbers together, and all the variables
x^2-1x-(-1x)-20=0
We get rid of parentheses
x^2-1x+1x-20=0
We add all the numbers together, and all the variables
x^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $

See similar equations:

| x²-10x=-16 | | (2x+5)²(2x+5)-x(4x-5)=100 | | (2x+5)²-x(4x-5)=100 | | 0=2*3+m | | -4=2*3+m | | 9h=8+ | | 7x-2/5x-1=7x+3/5x+4 | | 8m-20=5 | | 3y×2y=25 | | 7p+9p+8= | | X=272400+0.15x | | (10x/3)=2x+12 | | X^3-5x^2+8x-8=0 | | 5x+18=3+4x | | 3x-x-2/8=4-x-1/4 | | v+3=19 | | 10+7x-3x²=0 | | 5-3(w+2)=2w | | x^2=x*8-12 | | 9x-139=2x-6 | | x^2=x+8-12 | | 9x-7=x+11 | | 4y-6=6-2y | | 216=6^x-3 | | 120÷0=x | | x/2-×/4=1/2 | | 3(7x+4)=44 | | (5/x)-(1/2)=2 | | (x/3)-(1/3)=4/3 | | X^3+4x^2+x-10=0 | | (x/3)-(1/3)=(4/3) | | 3(m+3)=m-3 |

Equations solver categories